Tonsillectomy

• One of the most commonly performed procedures worldwide
• Approximately 530,000 cases in the U.S. annually
• Majority in children for OSA / UARS
• No real consensus on the best surgical method or extent of removal
Tonsillectomy - Indications

- Obstructive sleep apnea
 - Upper airway resistance syndrome
 - Primary snoring
- Recurrent strep pharyngitis
- Recurrent PTA
- Asymmetry / concern for malignancy
- To rule out post transplant lymphoproliferative disorder (PTLD)
- PANDAS
- PFAPA
Clinical Practice Guidelines: Tonsillectomy in Children

- January 4, 2011
- The American Academy of Otolaryngology- Head and Neck Surgery
- February 2013
- FDA issue a new Boxed Warning regarding administration of Tylenol with Codeine in children with OSA
History of Tonsillectomy

- Dates back almost 2000 years
- 25 A.D. – Celcus describes using a finger or blunt hook for dissection of the tonsil
- 1600 – Peter Lowe describes the use of a snare and ligature for the excision of tonsils
- 1828 – Physick develops the first standard instrument, the tonsil guillotine or tonsillotome
- 1897 – Ballenger – modern cold-steel tonsillectomy
New Techniques - Why?

• Effectiveness
 – Depends on the indication
 – Polysomnogram for OSA (rarely done postop.)

• Pain
 – Days with pain
 – Return to normal diet and/or activity
 – Number of days narcotics are needed
 – Subjective scoring scales

• Bleeding
 – Intraoperative vs. delayed postoperative bleeding
 – Which events qualify? Admission, return to OR, etc.

• Cost
 – Cost to who? Patient, hospital, society, etc.
 – Cost / benefit analysis
Current Techniques - Tonsillectomy

- Cold steel dissection
- Monopolar electrocautery (EC)
- Bipolar EC
- Microdebrider - subcapsular tonsillectomy
- Coblation - subcapsular vs. extracapsular
- Harmonic scalpel
- Others
 - Laser
Subcapsular vs. Extracapsular Tonsillectomy

• Theory that preservation of the tonsillar capsule with a thin rim of tissue may lead to decreased postoperative pain and bleeding

• The differing nature of the various techniques and instrumentation themselves
Current Techniques - Adenoidectomy

- Curette alone
- Monopolar EC (suction Bovie)
- Curette with Monopolar EC
- Microdebrider
- Coblation
ASPO Survey (Walner, 2007)

- **Tonsillectomy** (OSA)
 - Monopolar - 53%
 - Coblation - 16%
 - Cold with monopolar - 10.6%
 - Bipolar - 6.2%
 - Cold with bipolar - 5.3%
 - Harmonic scalpel - < 1%
 - Cold dissection - < 1%
 - MD - < 1%
 - Laser - < 1%

- **Adenoidectomy** (OSA)
 - Monopolar - 25%
 - Curette with monopolar - 22.4%
 - MD with monopolar - 19%
 - Coblation - 6.9%
 - MD alone - 6%
 - Curette alone - 4.3%
Cold Steel Dissection

- Use of forceps and scalpel, scissors or snare
- Hemostasis
 - Classically with suture ligatures
 - Also described with monopolar or bipolar EC
- Largely replaced by newer techniques to limit intraoperative blood loss
- Gold standard for comparison
 - Effectiveness
 - Pain
 - Bleeding
 - Cost
“Cold Steel” Dissection
Monopolar Electrocautery

- Monopolar electrical energy used to burn tissue
- Hemostasis through cauterization
- Temperatures up to 400°C can result in thermal injury to surrounding tissues with potential increase in postoperative pain
Bipolar Electrocautery

- Bipolar electrical energy used to burn tissue
- Hemostasis with bipolar cauterization
- Thermal injury potentially more focused
- Use of guarded bipolar forceps very important!
Bipolar Electrocautery
Microdebrider

- Powered rotary shaver with continuous suction
- Results in a partial or “subcapsular” tonsillectomy
- Used primarily for OSA
- No thermal injury
- Potential for recurrent symptoms due to residual tonsillar tissue / tonsil regrowth
Microdebrider
Coblation

- Uses bipolar RF energy to excite the ions within a conductive medium (saline)
- Generates enough energy to break organic molecular bonds in tissue
- 40° to 70° C
- Has some coagulation properties
- No risk of airway fire
Coblation
Harmonic Scalpel

• Uses ultrasonic energy
• The blade, vibrating at 55 kHz, transfers this energy directly to the tissues resulting in simultaneous cutting and coagulation
• Coagulation results from the denatured protein coagulum and secondary heat
• 80°C
Results - Effectiveness

• For OSA, each of the techniques appear to be effective
 – Microdebrider
 • Bitar, 2008, n = 143 (vs. monopolar EC, based on survey data)
 • Reilly, 2009, n = 26 (based on f/u PSG data)
 – Coblation
 • Friedman, 2009, n = 159 (based on f/u PSG data)

• What about tonsillar regrowth with subcapsular tonsillectomy?
 • Derkay, 2006, n = 300 – children microdebrider group 5x more likely to have residual tonsillar tissue on exam at 1 month
 • Colen, 2008, n = 50 – improvement based on OSA-18 remained stable up to 1 yr.
Results - Pain

• Bipolar EC
 • Kulak, 2008, n = 201 - decreased pain in early postop period, but worse after one week vs. cold steel

• Microdebrider
 • Wilson, 2009, n = 156 – 2 less days of pain, similar days requiring pain medication, and earlier return to preoperative diet (4.59 vs. 6.36) in comparison with monopolar EC

• Coblation
 • Wilson, 2009, n = 156 – 2 less days of pain, 2 less days requiring pain medication and earlier return to preoperative diet (4.85 vs. 6.36) in comparison with monopolar EC
 • Chang, 2006, n = 101 – less pain and earlier return to normal activity compared with monopolar EC
 • Burton, 2009, meta-analysis of randomized controlled studies found no significant decrease in postoperative pain
Results - Bleeding

- **Bipolar EC**
 - Kulak, 2008, n = 201 – no difference in comparison to cold steel

- **Microdebrider**
 - Wilson, 2009, n = 156 – no difference in comparison to monopolar EC or coblation

- **Coblation**
 - Ragab, 2005, n = 200 – no difference in comparison to cold steel
 - Wilson, 2009, n = 156 - no difference in comparison to monopolar EC or microdebrider
 - Lowe, 2007, national audit in UK of 40,514 patients
 - 3.5% rate of delayed bleeding overall
 - Significant increase in rate for coblation when used for dissection and cauterization (OR = 2.47)
Results - Cost

• Cost / Benefit analysis
 – Earlier return to school
 – Earlier return to work for primary care giver

• UCLA Hospital
 – Bipolar EC - re-used
 – Microdebrider blade - $107
 – Coblation wand for T&A - $125
 – Bovie and suction EC - approx. $10 each

• Time of procedure
 – Can vary with surgeon and institution

• Wilson, 2009, n = 156
 – Microdebrider < monopolar EC < Coblation
Results - Summary

• Effectiveness appears comparable (for OSA)
• Appears to be potential for decreased postoperative pain with microdebrider and coblation vs. monopolar EC
• Postop bleeding appears to be similar, though primarily when used along with EC for hemostasis
• Procedure / OR time key factor in total cost
• Comfort level with “subtotal” tonsillectomy an important factor
My Current Practice

• **Tonsillectomy**
 - Monopolar electrocautery
 - Intra-operative dose of dexamethasone (1mg/kg)
 - Intra-operative Ampicillin (40mg/kg)
 - No post-operative Abx
 - Lortab elixir for pain

• **Adenoidectomy**
 - Microdebrider
 - Suction monopolar cautery for hemostasis
Adeoidectomy
Tonsillectomy